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Abstract

This paper describes the development of a new satellite instrument cost model currently in
use with the Jet Propulsion Laboratory’s Advanced Projects Design Team, Data selection
and normalization are discussed. A cost estimating relationship is developed using linear
multivariate techniques in a step-wise parameter selection process with both qualitative
and quantitative data. The rationale for the choice of this method over a segmented,
univariate approach or a nonlinear approach is also stated. A discussion of the statistical
model validation is included. A brief example and explanation of the model’s use with
Monte Carlo probability density functions, is covered.

Introduction

As part of the ongoing NASA effort to bring more value to the American public in this
new age of reduced government spending, the Jet Propulsion Laborato~ (JPL) has been
undergoing an institution-wide effort to examine, and where appropriate, to re-construct
its entire spacecraft development approach. One of the earliest and perhaps most
successfid examples is found in the arena of advanced project design. In 1995, JPL
launched its Advanced Projects Design Team (also known as “Team X“) as an experiment
in concurrent engineering. The team consists of fourteen engineers representing all the
technical disciplines necessary for the completion of a high-level mission design --
including cost. All disciplines are interlinked via a group of networked work stations
running discipline-specific soflware applications and exchanging data through common
spreadsheets. Typical tasks include trade studies, proposal evaluations, and technology
road mapping. Since inception, Team X has conducted more than 200 studies most of
which included at least one cost estimate. Prior to the advent of Team X, parametric cost
modeling at JPL was largely relegated to the business of proposal cost validation. Only a
handful of estimates was produced annually. These early parametric models were large
algorithms requiring considerable subjective input and as such were deemed unsuitable for
the Team X environment where cost modeling time is limited and subjective inputs are
open to aggressive criticism and second guessing. Thk design pace pushed the parametric
cost model out of the realm of institutional safeguard and into the world of product
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design. In this re-engineering experiment, parametric cost modeling has moved from a
design check to a design tool.

A new total project, total life-cycle parametric model was developed for this concurrent
engineering environment. The total project model and its supporting spacecraft model are
discussed in other papers presented at this conference; this paper will address the newly
updated instrument cost model used for payload cost estimation by Team X.

The type of work being estimated by Team X presents several unusual challenges. NASA
and JPL exist to do that which is too financially risky to attracte&he private sector. As
such, we routinely build one-of-a-kind spacecraft, oflen utilizing the latest technology,
The data available for instrument modeling may appear meager and exceedingly diverse
when compared to data from other industries or even the commercial side of the satellite
business. Add to that the rather limited design definition one is likely to find in a proposal
or feasibility study, and you have the Team X estimation environment. On the plus side,
the typical Team X customer is a senior scientist or engineer often possessing skills in
parametric estimation and as such is better positioned to understand our methods and
results than someone without a working knowledge of statistics.

Aside from the usual desire to produce as high a correlation between model and data as
possible, there were three other goals central to this development effort: the need to
maintain a tangible connection between our estimate and the model’s database, the need to
evaluate uncertainty in our estimates, and the need to remain objective. We view all
estimates as essentially analogy estimates. The single-point analogy method is obviously
so. The ground-up, grass roots method compiles costs based on expert opinions of labor
and material requirements which are themselves based on analogous experiences in that
particular expert’s personal history. The parametric approach is simply an analogy to the
model’s entire supporting database. It is for this reason -- that we consider our model
estimates to be analogous to our model’s database -- that we must be able to express this
connection (along with our database’s relevance to our customer’s design) to establish the
significance of our estimate to the customer’s instrument. The chief method is a common
scatter plot of the data and the estimate – simple, yet surprisingly effective at defusing the
off hand dismissal of a parametric estimate that does not support expectations. By
characterizing the uncertainty associated with an estimate, we hope to express what is
known from the data and no more. There can be considerable pressure to interpret an
estimate as supporting one view or another. A single point estimate can play into this
politicization of the estimate by the ambiguity in its accuracy. An arbitrary, poorly
supported, error figure is ofien attacked by review boards and rightly so as it can leave the
customer with an understated understanding of the uncertainty and its associated risk.
Our aim is to characterize both the model’s inherent uncertainty due to residual error and
sample size, and, to the extent that it is known, our customer’s uncertainty with respect to
the input parameters, by using Monte Carlo techniques. Our outputs are expressed as
probability distributions rather than single point estimates. Lastly, objectivity is our most
important aim. Aside from the speed of assessment, defensibility of estimate, calculable
error, and political isolation that it brings, there is the practical reality that waging a



subjective evaluation of parameters like heritage, complexity and technological
development, with creditable consistency, would require in-depth instrument knowledge
spanning all technologies represented within the model, and as such would be beyond the
capabilities of any one person.

Data

Ultimately, the Advanced Projects Design Team Instrument Cost Model (APDTICM)
rests on the specific instruments used to calibrate it. The present version of the model is
based upon ninety-five instruments built generally in the 1980s and 1990s for flights in the
late 1980s through the late 1990s. The selected instruments were chosen primarily based
on the availability and accuracy of their cost and parametric data. For example, only
instruments likely built and accounted for using fill-cost accounting are included.

These missions have at least one instrument in the APDTICM database:

●ADEOS

●ASTRO-I
.Cassini
●COBE
●EOS-AM
●EO$PM
.Galileo
●GR()

.Hubble Space Telescope ●NOAA-K
●lSTP-Polar ●San Marco D
●]s’rp.wind ●sIR-c/x-sAR

●Magellan ●TOPEX

.Mars Global Surveyor ●UARS

.Mars 98 Lander ●Ulysses

.Mars observer ●IJsMI/- 1

●Mars Pathfinder

The APDTICM instrument database initially contained nearly 40 parameters for each of
over 110 instruments. As the model was built, the number of important parameters was
trimmed down to six, and a few instruments were excluded from the database, typically
due to age or inconsistencies in the data.

A few instruments were removed from the data set for other than age-related reasons.
Two instruments (TOPEX laser reflector and LAGEOS) were removed because they were
basically just mirrors, and as such, represented a wide technical departure from the body
of instruments in the data. Cost data pertaining to the CUBIC instrument came from a
superllcial description on its web page and could not be independently confirmed. Three
instruments (Cosmic Dust Analyzer and Magnetometer on Cassini and the Alpha-proton
X-ray Spectrometer on Mars Pathfinder) were removed from the JPL data because@~
were built and managed by foreign entities; we had concerns that these costs were not “1

complete.

The data for these instruments were collected from many sources, including databases for
previous instrument cost models, NASA databases, and local data stores. The majority of
the instruments included here, some 42 data points, were also included in the 1993
Scientific Instrument Cost Model (SICM) / Multi-Variable Instrument Cost Model
(MICM) database. This was our default data source. Costs for 39 instruments and some
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programmatic information were taken from JPL internal records. Some additional
programmatic data was extracted from the 1993 NASA Cost Model (NASCOM) database
and the on-line National Space Science Data Center (NSSDC). Where necessa~,
appropriate unit conversions were applied for the technical data. The cost data was
inflated from (as appropriate) FY92, FY94, FY95, or FY96 dollars to FY98 dollars using
the 16 April 1997 NASA New Start Inflation Index.

In addition to the NSSDC and MICMKICM data, a few other data sources were used.
These included some generally available data (usually non-cost data collected off of the
instrument WWW home pages) and some data from NASA-only data sources (such as the
REDSTAR archive run by MSFC and SAIC).

Four cost data points, related to the Mars ’98Lander mission, were taken from a UCLA
proposal on the WWW. While this is not the most creditable source, the data represents
only a few points, and gave no statistical evidence (such as t-ratios) that indicated that
these particular data departed from the body of instruments. For the time being, we have
elected to include them, but will review and possibly revise once more creditable NASA
sources become available.

In developing this model, we have attempted to use quantitative data as much as possible.
Quantitative parameters have two significant advantages over qualitative data. Primarily,
quantitative data offers a continuum of values, which can then be analyzed alongside the
continuum of cost data. Quantitative data, typically, is also clearly associated with some
measurable property of the instrument (such as mass), and hence is typically not
subjective.

Our qualitative data is objectively stated as a group of yes-or-no questions. The yesho
answers are then transformed into ones and zeros. These are commonly referred to as
dummy variables [Draper and Smith, 1981, $ 5,4] and are the usual way that qualitative
data is addressed in ordinary least squares regression. Since qualitative data is not defined
over a continuum, the standard, gradient dependent, “hill climbing” techniques used to find
residual local extrema in the most common non-linear least squares techniques are not
employable.

In keeping with the goal of retaining connectivity between the database of our model and a
customer’s design, the age of our data points is always a concern. Changes in technology,
project implementation, agency focus .. .even accounting practices can affect the relevance
of older data to a new instrument under study. We selected a minimum baseline launch
date of 1988 or later for our model data. This avoided the use of pre-Challenger payloads
that were built before the agency-wide policy impact that followed the 1986 accident, but
still allowed sufficient data for our modeling.

Model Development



Model development begins with the selection of model structure. The selection of model
form is partly driven by the number of data points available, number of independent
variables, and the apparent behavior of the data, As thk exercise was an update to an
existing model, the form had already been determined, but we will review the basis of this
form for completeness. The use of a multivariate model had always been taken as given;
mass was well correlated to cost, but not to the point where it alone could be used for
meaningful cost predictions - other parameters would need to be introduced.
Segmentation of the data base into several mutually exclusive models based on, say,
“instrument type” (as in the SICM model [PRC, 1990]) had been ruled out, due in part to
the difficulty in defining newer instruments into single instrument types, and in part in the
interest of characterizing common cost drivers on as wide a database as possible. This was
accomplished by the addition of a mutually exclusive dummy variable array covering the
five instrument categories (i.e., electric fields & magnetic fields, X-ray& charged
particles, microwave, laser, and electro-optical) described in the Goddard MICM report
[Dixon and Villone, 1990, pp. 30-31], to our multivariate model. This approach forces the
model to fit all instrument categories with common cost/mass and costhife sensitivities at
the expense of a lower R* than maybe possible with a segmented data set. While most
likely not optimal, this arrangement requires less data for modeling, allows us to compare
the relative importance of different independent variables, including instrument type, for
predicting cost, and, as the model’sR2 is 84,2%, it still represents a reasonably good cost
forecasting tool. Initially, we did try a dummy variable array using all fifieen MICM
instrument families but most families did not produce convincing t-ratios, probably due to
too thinly populated groupings; better results were achieved with the five instrument
categories – the next higher grouping in the MICM instrument hierarchy. To acquire
enough data to reconstruct the 15 original SICM categories would require going back one
or two additional decades into the historical record. The advantage, if any, to
segmentation did not measure up to the loss in connectivity between our data base and our
customer’s design that we would endure should we opt to expand the data substantially
prior to the last ten years and include instruments built with older technology under
outdated programmatic constraints. The choice of a linear model over a non-linear model
is also a bit of a judgment call. Linear ordina~ least squares restricts the model to forms
that are linear, or intrinsically linear (i.e., non-linear relationships that are transformable
into a linear relationships). Not all possible parametric relationships can be expressed this
way. Non-linear models do not place this restriction on model form, however, non-linear
models lose the clear geometric description available in the linear multivariate model and,
along with it, a number of modeling measures valuable in the evaluation of predictors and
model performance. Additionally, as noted earlier, non-linear analysis of qualitative data,
such as “instrument type”, is particularly problematic due to the discontinuous nature of
the parameter and the local minimum solving techniques found in standard non-linear
methods [Bjdrck, 1996, $ 9.1.2]. We elected to presume a linear fit until a time when the
statistical evidence compelled us to do otherwise.

The model was generated using standard least squares fits to linear, log-linear, and log-log
forms on a trial-and-error approach. The data were randomly divided into two groups: one
group of 65 points was used for model regression, and the other group containing the



remaining 30 points was used for model validation. The statistics package used was
MINITAB”, MINITAB@allows the predictors to be loaded in and regressed in bulk
against the dependent variable by systematically going through all predictor combinations
and printing out those with the highest Pearson coefllcients for each number of predictors.
This substantially reduces the workload and permits the evaluation of hundreds of
predictor combinations as possible models. Once likely predictors have been identified, a
detailed regression is run to generate model coefllcients, coefficient t-ratios, cross-
correlation measurements, and an overall R2value. Different runs are compared with the
objectives of maximizing R2, minimizing cross-correlation and providing predictors with
creditably high t-ratios. This last part is somewhat arbitra~, but about two standard
deviations were used as the minimum acceptance criteria. The final model equation and
associated statistics (after transformation into linear form) are shown below in Figure 1.
Cost is in 1998 millions of dollars, mass is in kilograms, and design life is in years. All four
dummy variables are valued as 1 for “yes” and Ofor “no”.

Cost = 2.5883 *(Mass05’7)*@Jfe0”43’)*(0.3 133EF&w)*(0.4112mAy)
*(0.3607c0py)*(0.6965-)

Variable

In(Cost)
Constant
ln(Mass)
In(Life)
EF&MF
X-Ray
copy
Univ.

Mean
2.811

. .

3.567
0.994
0.123
0.308
0.092
0.246

Model 1
St. Dev.

1.351
. .

1.925
1.064

. .

-.

ta
Range

-0.5 to 5.5
.-

0.3to 9.4
-2.3 to 2.1

-.

-.

--

Varil
Coef.

. .
0.9511
0.5673
0.4389

-1.1607
-0.8887
-1.0196

Ie Coefli
St. Dev.

-.
0.2255
0.0416
0.0740
0.2173
0.1573
0.2427

-0.3617 I 0.1580

ient
t-ratio

--
4.22

13.65
5.93

-5.34
-5.65
-4.20
-2.29

ANOVA:
SOURCE DF Ss MS F
Regression 6 100.142 16.690 57.85
Error 58 16.734 0.289
Total 64 116.876

R2 = 84.2%

Figure 1: Model Statistics

The independent variables selected as significant cost drivers were mass, mission life, and
four dummy variables: electric & magnetic field instruments, X-ray& charged particle
instruments, university built instruments, and copied instruments. Mass has long been
identified as an instrument cost driver -- that it is the dominant component in thk model is
not unexpected (see also Figure 2). The relation to mission life has been suspected for



some time, but is often handled with the surrogate of mission type, as is the case with the
1990 MICM model [Dixon and Villone, 1990, p 8] and the earlier version of this model.
We view the connection of cost to mission life rather than cost to mission type as the more
direct and meaningful, and as such, it represents a major improvement over our earlier
work. The two instrument catego~ dummy variables are the same as used in the original
version of this model. The lower cost per kilogram associated with either of these two
instrument categories is most likely due to less sophkticated technology than found on
other instruments in general. Since the costs attributable to these parameters is the
component exclusive of mass, they are probably the closest objective representation of
complexity we have yet uncovered. That copies of previously built instruments cost less
than new designs should surprise no one. This is, of course, due to the lack of design and
other non-recurring costs in the payload. This parameter was missing from the original
model, so its inclusion will allow better estimation of second unit costs than was
previously possible. And lastly, we ascribe the lower university-built costs to the lower
labor rates typically found in educational centers where work forces are ofien augmented
with students, and post doctoral staff members.
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Figure 2: Mass vs. Actual Cost

The total cost includes design, development, test and evaluation costs plus the first flight
unit cost. The total cost does not include contractor fees or instrument to spacecraft
integration costs. The total mass includes the mass of all parts of the instrument, including
such things as antennae and telescope optics as are required for operation. The design life
is the length of time that the instrument was designed to operate. For most instruments, it
should be roughly the period of time between launch and the end of life for the spacecraft.



An assumption was made that typical Space Shuttle instruments (which fly for
approximately two weeks) are designed to last 0.1 years. This assumption is likely true
even for instruments designed to fly on several Shuttle missions, as simple components can
be replaced between flights. The instrument categories are identical to the MICM
instrument categories [Dixon and Villone, 1990, p. 30]:

. Electric Field and Magnetic Field Instruments -- This instrument group
detects/measures magnetic and electric fields within the magnetosphere, outside the
magnetosphere, between the gee-magnetic and interplanetary fields -- plus fluctuations
in these fields. Magnetic field instruments have search coil, fluxgate, and atomic nuclei
sensors. Electric field instruments have antennas and/or paired-probe sensors.
Included in each type of instrument are associated electronics with detection/analyzer
and data processing capability.

. Charged Particle and X-Ray Instruments - This instrument group detects/measures the
properties of X-Rays/Gamma rays and/or charged particles in the plasmas that have
been trapped in the magnetospheric region of earth or another planet. The particle
measurements include type, number, mass, and kinetic/thermal energy. There are three
instrument classes: (1) Instruments that detect X-rays/Gamma rays and/or cosmic ray
particles by their interaction with matter; (2) Instruments that determine particle mass
with an electromagnetic analyzer; and (3) Instruments that detect/measure
kinetic/thermal energy with an electrostatic analyzer.

Instruments that are exact copies include only instruments that are built identically to
previously built instruments. Very few instruments should be exact copies, and the
scientists and engineers responsible for those that are exact copies should know it. For
example, the Mars Observer instruments that were rebuilt and flown on Mars Global
Surveyor and Mars 98 Surveyor are exact copies. If any significant changes are made
during rebuilding or retrofitting an instrument (like changing to electronics that are more
modern), then this likely is not an exact copy. The exact copy question is meant to
capture instruments that have no new engineering work. The “instruments built by an
educational institution” parameter is supposed to capture some of the cost savings which
educational institutions seem to gain from using student labor. If we divide the world into
three types of entities: industry, Federally Funded Research and Development Centers
(e.g., JPL, LANL), and educational institutes, only instruments built entirely by the last
group should answer ‘yes’ to this question.

Notable parameters tested but not selected for use in this model were power, data rate,
launch year, and lead NASA center. Data rate, launch year and lead center were dropped
because low t-ratios implied that they had little effect on cost. This is reassuring in the
case of lead NASA center as a particular stand out could be interpreted as an indication of
irregular accounting methods. Power data did have a significant t-ratio but only raised R*
by 1% and severely lowered the mass t-ratio. This is a sign of significant correlation
between mass and power (see also Figure 3). Since the improvement was marginal and



bought with the removal of several data points lacking power information we elected to
omit power from our model.

The mass parameter data ranged from 1.3 kg to 1817,7 kg (and one instrument -- SIR C --
at 11 metric tons). Even after transformation, the SIR C mass appears as an outlier,
however, in all other characteristics SIR C is comparable to the rest of the data base. We
have decided to include it, as it fits the model and represents a rare historical example of
an extremely heavy payload, but model estimates far above 1800 kg are more anecdotal in
nature and should be handled in another manner if possible. The design life data ranged
from 0.1 years to 8 years. It is important to note these ranges as they define the limits of
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Figure 3: Mass vs. Power

the model. Input data outside these ranges can produce dubious results and are indicative
of a lack of relevance of our database to that particular design.

Residual Analysis

Next, the residual for this equation was examined graphically. It should be noted that
since our model is multiplicative and is transformed into linear by taking the logarithm of
the model, we are not evaluating the multiplicative error e, but rather the natural logarithm
of the error, in(c). Plots of the residual versus each independent variable were run to
verifi uniformity over the entire model range (see Figure 4, Figure 5, and Figure 6). An
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additional plot of residual verses launch date was also run (see Figure 7) to evaluate if any
uncaptured, time based cost components exist: our conclusion is there is no discernible
cost trend over our ten year baseline. A histogram (see Figure 8) of the residual was also
generated as a crude gauge of the error distribution (a fundamental assumption in
multivariate modeling is that the residual is normally distributed about zero). A more
rigorous confirmation was carried out by first demonstrating that residual mean was within
sampling error of zero using

Z=w
(cJ/fi )

where n is the sample size, ~ris the residual mean, p is the normal population mean, and CT
is the normal population variance. Since our model’s residual is standardized, the
comparable normal distribution has mean equal to zero and a variance of 1. With a
residual mean of-0.002 and a sample size of 65 points, the model’s standardized residual
has a z number of -0.016 with respect to the standard error of the mean of the normal

distribution; essentially the model mean is 25%
r

——
easilv within samdin~ error to the
hyp~thesized nor’mal”meanof zero. Two
other tests were performed to check the
residual normal distribution requirement:
the first was a comparison of the residual
and normal population variances using
the F test; the second was a comparison
of the two population distributions using
the Chi-square test. The first test is
simply taking the ratio of the two

20%
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Oh Cmlw

Fig. 8: Histogram of Model Residual

variances and comparing it to a critical value from an F distribution for a chosen
confidence level [McClave and Benson, 1988, $ 9.3]. In all our tests, we use a 95°/0
confidence level. If the ratio is above the critical value, we accept the null hypothesis that
the two samples represent different populations. Conversely, if the ratio is below the
critical value, we must reject the hypothesis. With an F test statistic of 1.018, the variance
ratio of the standardized residual and normal distribution, is under the critical value of
1.53. There is no evidence to suggest that the distribution of the residual is anything but
normal. This test presumes that both sample populations are normally distributed. In the
case of the Chi-square test, however, this restriction is not required. The Chi-square test
compares the two distributions against a critical value selected from a Chi-square
distribution, and as in the F test, values above the critical value indicate acceptance of the
null hypothesis and values below indicate rejection. Distributions are characterized by
segmenting into a group of cells. The number of data points within each cell are counted
and compared to the number of data points within the corresponding cell in the other
sample distribution. Cells must be selected so that no cell has less than five counts. The
test statistic is [McClave and Benson, 1988, $ 17.1]:
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where i is a particular cell in the distributions, E(ni), the expected number of outcomes, is
the number of data points from the normal distribution, and ni, the number of outcomes, is
the number data points from the residual distribution. With a Chi-square statistic of2.246
and a critical value of 12.592 we again conclude that there is no evidence that the residual
is other than a normal distribution.

Model Validation

The thirty data points not used in model generation, were run through the model to create
a population of predicted values. Validation was carried out by comparing predicted and
actual cost populations with F and Chi-square tests similar to those used to compare
residual and normal populations earlier in this paper. The validation F test statistic was
1.015 compared to a critical value of 1.84, and the validation Chi-square statistic was
5.244 compared to a critical value of 7.814. With a 95% confidence level we conclude
that there is no evidence that predicted and actual populations differ.

Model Output

Once the model had been verified, we needed it in a form that could be easily used. To
that end, we built a workbook in Microsofi Excel” that would be able to accept inputs
from the user and return the cost estimate (for the mean cost), along with a confidence
interval and a prediction interval. Confidence and prediction intervals were calculated
using the following linear least squares equations [Johnson and Wichern, 1992, pp. 305-
306]:

Confidence Interval: z.o’~i t~(c.c/2)~S2(Z0’(Z’ZJ1ZO)

Prediction Interval: zo’p* tn,(d2) ~s2(l + 20’(2’2)-120)

where ~=[1, %l,..., ZO,]is a vector of input values for the r model independent variables,
P is the model coefllcient vector, Z is the design matrix, s is the standard error of the
estimate, and tn,(a/z) is the upper 100(a./z)th percentile of a t-distribution with m degrees
of freedom.

We then attached graphics soflware (for scatter plots of the data and estimate), which
allows us to get a better feel for the actual distribution of the data (see Figure 2 for an
example). Finally, in keeping with our goal of being able to express the error associated
with our estimates in a quantitative and understandable method, we installed a Monte
Carlo generation add-in to the Excel-based model to create histogram probability density
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fimctions (PDFs) for each estimate. A brief description of the process is given by Sobol’
[1994].

In our Monte Carlo simulation, uncertainty in the design is captured with PDFs for the
input parameters, and uncertainty in the model due to the standard error of the estimate
and uncertainty in the model coefficients is represented as a normal distribution with mean
equal to the model prediction and standard deviation equal to the square root of the
variance of the forecast error. These uncertainties are convolved to produce an output
PDF for the cost estimate. An example using triangular distributions for mass and mission
life is given in Figure 9 and Figure 10. In particular, we used a triangular mass distribution
with a minimum value of 45, a most likely value of 50, and a maximum value of 52 kg.
The design life distribution was triangular, with a minimum of 1,5 years, a most likely
value of 2, and a maximum value of 3 years.

Conclusions

Through a multivariate approach, we were able to create an instrument cost model with
reasonably high coefficient of determination, calculable uncertainty, and requiring only
minimal design knowledge. The relative strengths of cost drivers are now readily
identifiable through model coefficients and t-ratios. Objectivity, recognized statistical
techniques, and graphical tools enable us to convey the connection from our database,
model, and estimate, to our customer’s design. The final product is an instrument cost
model valid over a wide range of instruments, masses and mission durations, and capable
of the rapid, objective estimates needed in the concurrent engineering setting.
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